Extensions 1→N→G→Q→1 with N=C22xD13 and Q=C4

Direct product G=NxQ with N=C22xD13 and Q=C4
dρLabelID
C22xC4xD13208C2^2xC4xD13416,213

Semidirect products G=N:Q with N=C22xD13 and Q=C4
extensionφ:Q→Out NdρLabelID
(C22xD13):1C4 = C22.2D52φ: C4/C1C4 ⊆ Out C22xD131044(C2^2xD13):1C4416,13
(C22xD13):2C4 = D26.D4φ: C4/C1C4 ⊆ Out C22xD131044+(C2^2xD13):2C4416,74
(C22xD13):3C4 = C22:C4xD13φ: C4/C2C2 ⊆ Out C22xD13104(C2^2xD13):3C4416,101
(C22xD13):4C4 = C2xD26:C4φ: C4/C2C2 ⊆ Out C22xD13208(C2^2xD13):4C4416,148
(C22xD13):5C4 = C2xD13.D4φ: C4/C2C2 ⊆ Out C22xD13104(C2^2xD13):5C4416,211
(C22xD13):6C4 = C23xC13:C4φ: C4/C2C2 ⊆ Out C22xD13104(C2^2xD13):6C4416,233

Non-split extensions G=N.Q with N=C22xD13 and Q=C4
extensionφ:Q→Out NdρLabelID
(C22xD13).1C4 = C52.46D4φ: C4/C1C4 ⊆ Out C22xD131044+(C2^2xD13).1C4416,30
(C22xD13).2C4 = Dic13.4D4φ: C4/C1C4 ⊆ Out C22xD131044(C2^2xD13).2C4416,88
(C22xD13).3C4 = D26:1C8φ: C4/C2C2 ⊆ Out C22xD13208(C2^2xD13).3C4416,27
(C22xD13).4C4 = C2xC8:D13φ: C4/C2C2 ⊆ Out C22xD13208(C2^2xD13).4C4416,121
(C22xD13).5C4 = M4(2)xD13φ: C4/C2C2 ⊆ Out C22xD131044(C2^2xD13).5C4416,127
(C22xD13).6C4 = D26:C8φ: C4/C2C2 ⊆ Out C22xD13208(C2^2xD13).6C4416,78
(C22xD13).7C4 = C2xD13:C8φ: C4/C2C2 ⊆ Out C22xD13208(C2^2xD13).7C4416,199
(C22xD13).8C4 = C2xC52.C4φ: C4/C2C2 ⊆ Out C22xD13208(C2^2xD13).8C4416,200
(C22xD13).9C4 = D13:M4(2)φ: C4/C2C2 ⊆ Out C22xD131044(C2^2xD13).9C4416,201
(C22xD13).10C4 = C2xC8xD13φ: trivial image208(C2^2xD13).10C4416,120

׿
x
:
Z
F
o
wr
Q
<